
SMART CONTRACT AUDIT

March 15th 2023 | v.	2.0

score

99

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

LYOpay Smart Contract Audit

This document outlines the overall security of the LYOPAY smart contracts evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the LYOPAY smart contract codebase
for quality, security, and correctness.

Contract Status

low Risk

Testable Code

98% of the code is testable, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the Ethereum network’s fast-paced and rapidly
changing environment, we recommend that the LYOPAY team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

2

LYOpay Smart Contract Audit

5Structure and Organization of the Document

7Complete Analysis

10Code Coverage and Test Results for all files written by Zokyo Security

4Executive Summary

6Protocol Overview

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

LYOpay Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

contracts\LYOv4.sol

The source code of the smart contract was taken from the LYOPAY repository:  
contracts are delivered as archive:

archive sha256:
84822bbf139690b9cb86160d066ed91cc9af3001d9e9aa0b723b4b7c341c09e3

LYOv2.sol sha256:
8cecf0a88b15e6db6dcec2837460fcf9369d5bb332fc2828a38d6d4d96eaa7e3

LYOv4.sol sha256:
72cf6a835c3cfeee2d4bb3e67fa921ac7db3858e8664ec103da5264625811a4f

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contract logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of LYOPAY smart contracts. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Hardhat testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

4

LYOpay Smart Contract Audit

Executive Summary

 Zokyo Security team reviewed the LYO Credit token against the standard violations,
against potential backdoors, and the correct roles system and verified all modifications to
the ERC20 logic. From the business logic perspective, contracts act as expected, roles are
assigned correctly, and no standard functions are violated. Also, the LYOPAY team verified
the correctness of the Burn logic. However, auditors noted that unlimited burn may still
cause issues, so it is recommended to provide sanitizing policy against token usage.

 The main issue is the upgradeability of the token. Despite the verification from the LYOPAY
team, Zokyo auditors still classify upgradeability as a controllable backdoor. Even if its usage
is inevitable, it still influences the security of the token contract. Therefore the contract fails
the appropriate checkpoint in the standard checklist. Also, the LYOPAY team verified that the
token would have the new deployment, so no upgrade will be performed.

 From other points of view, the LYOv3 token acts as expected. The only unresolved issue is
the unrecommended notation for the Solidity version. Since no tests/deployment scripts
were provided, auditors cannot verify the correct version which will be used during the
deployment.

 For the 4th version of the token, LYOPAY provided major changes
 LYOv4 is not upgradeable anymore (therefore, the controllable backdoor is closed
 The team removed Pauser and Frozen roles
 The team removed the inheritance of OpenZeppelin contracts which included the ERC20

standard and replaced it with a custom implementation of BEP2
 the team utilized 0.8.18 Solidity version (therefore the issue with the correct version is

closed)

The token is still ERC20 compatible; auditors checked the correctness of the standard
implementation. LYOPAY team also presumed the burn() functionality (which is available only
for the owner now) and custom decimals (8 decimals).

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” depending on whether they
have been fixed or addressed. The issues that are tagged as “Verified” contain unclear or
suspicious functionality that either needs explanation from the Client or remains disregarded
by the Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

5

LYOpay Smart Contract Audit

Protocol overview

LYO Credit is a token that implements the ERC20 standard. The most important thing to note
is that the contract is upgradeable
 Token implements Burnable and Pausable functionality
 The token has 8 decimals
 Initializer gets the token name, symbol, the token's owner, and the token's initial supply
 The initial supply is minted to the owner of the token.

The contract contains two roles: Pauser and Frozen role. The owner of the token
immediately gets default admin and Pauser roles. Pauser role can pause transfers. When the
Frozen role is assigned to the user, the user loses the ability for tokens transfer (both
transfer() and transferFrom()). Also, frozen users cannot renounce the role, and Admin can
freeze any user with no restrictions.

The token also has the functionality to recover tokens stuck in the contract.

After the major code update from LYOPAY team, LYOv3 became LYOv4
 the token is no upgradeabl
 the token inherits custom BEP20 implementation instead of OZ one (as it was for LYOv3
 the token is still ERC20 compatibl
 the token has burn() function available for the owner onl
 The token has 8 decimals
 Constructor gets the token's initial supply
 The initial supply is minted to the owner of the token, which is set from msg.sende
 Token’s name and symbol are “LYO Credit” and “LYO”

6

LYOpay Smart Contract Audit

7

LYOpay Smart Contract Audit

Medium-1 Resolved

Use fixed Solidity version.

Currently, LYOv2.sol utilizes the ^0.8 version. Since there are no deployment scripts, it is
unknown which version will be used. It is crucial because several releases of solc0.8
contained bugs (which affected optimization and correct work). Therefore there is a chance
to compile and deploy the contract with a vulnerable version. It is a general recommendation
to use a strict declaration of the Solidity version and use the latest stable version (0.8.17 by
this time).

Recommendation:

Use pragma solidity 0.8.17 OR provide deployment scriptswith exact version utilized.

Post-audit:

The code utilizes the lates stable version now.

Info-1 resolved

Upgradeable token.

LYOv2.sol is implemented as an upgradeable contract; therefore, upgradeability creates a
controllable but still a backdoor. So, this point fails the check against the existence of
backdoors in the token code. Usually, upgradeability creates no problems for the contract
code. But things are different for tokens since upgradeability affects listings and operations
on DEXes and creates uncertainty for token users. The issue is marked as info because
upgradeability may serve as an intended business logic solution. But since it violates the
criteria for backdoors in the code, the issue will influence the security rating.

Recommendation:

Remove token upgradeability or verify that it is an intendedbusiness logic solution.

Post-audit:

The LYOPAY team has verified that it is an intended logic. Nevertheless, auditors should note
that such an approach leaves the backdoor in the token’s logic (even if it is controllable).

Note: The team removed the upgadeability for the LYOv4

Complete Analysis

8

LYOpay Smart Contract Audit

Info-2 verified

Burnable token.

LYOv2.sol is implemented as a burnable token with no restrictions. Therefore the token
holder can burn his tokens in any possible amount. It creates a potential loophole when
custom contracts can burn tokens stored on them. The issue is marked as Info because it
may be an intended business logic solution. Also, since regular contracts (Uniswap or other
DEXes) cannot burn users' tokens, the chance of the exploit is low and limited to protocols
with upgradeable contracts. Still, since it violates the criteria for backdoors in the code, the
issue may influence the security rating.

It is especially crucial, since the token has no mint functionality - initial supply isthe only
minted.

Recommendation:

Verify the correctness of the Burn logic or verify whichprotocols will use LYO token.

Post-audit

LYOPAY team verified, that Burn logic works as expected. Nevertheless, auditors still
recommend to provided the sanitizing policy against the protocols or contracts where the
token may be used.

Note: The team left burn() function available for the owner only

Info-3 UNRESOLVED

Unused library

LYOv4.sol imports SafeMath library, but it is both obsolete because of 0.8 solc and unused
in the code. Thus it just increases the size of the contract with no useful effect

Recommendation:

Remove unused SafeMath library

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

contracts\LYOv2.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

9

LYOpay Smart Contract Audit

Contract: LYO
Standart ERC20 functions
✓ Correct name (110ms)
✓ Correct symbol (39ms)
✓ Correct totalSupply (46ms)
✓ Correct transfer (62ms)
✓ Correct approve (61ms)
✓ Correct increase allowance (57ms)
✓ Correct decrease allowance (74ms)
✓ Correct transfer from (92ms)
Specific LYO functions
✓ Correct Initialization
✓ Should not repeat Initialization
✓ Correct return decimals (39ms)
✓ PAUSER should pause (49ms)
✓ Not PAUSER should not pause (38ms)
✓ PAUSER should unpause (52ms)
✓ Not PAUSER should not unpause (45ms)
✓ Not FROZEN should renounce his existing role (38ms)
✓ FROZEN should not renounce his existing role (55ms)
✓ Not FROZEN should not renounce not his role (38ms)
✓ ADMIN should recover tokens (49ms)
✓ Not ADMIN should not recover tokens (42ms)
✓ FROZEN should not transfer (57ms)
✓ Not FROZEN should not transfer from FROSEN (76ms)

22 passing (2s)

As a part of our work assisting LYOPAY in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the LYOPAY
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files

10

LYOpay Smart Contract Audit

LYOv2.sol 100 90 100

FILE % STMTS % BRANCH % FUNCS

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug
bounty program to encourage further analysis of the smart contract by
third parties.

LYOPAY

LYOPAY

